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Summary

A two-step semidirect procedure is developed to accelerate
the one-step procedure described in NASA TP-2529. For a
set of constant coefficient model problems, the acceleration
factor increases from 1 to 2 as the one-step procedure
convergence rate decreases from + oo to 0. It is also shown
numerically that the two-step procedure can substantially
accelerate the convergence of the numerical solution of many
partial differential equations (PDE’s) with variable
coefficients.

Introduction

The iterative procedure developed in reference 1 requires
only a single application of a fast direct solver (FDS) in
advancing u” to u”*!. In the present report the following two-
step iterative procedure is investigated:

Pw'= —(Qu" —k) (r #0) (1)
and
Pu"*! — u") = Rw" 2

With the understanding that the notations defined in reference
1 are used in the present report, the only parameters in
equations (1) and (2) yet to be defined are w", the
intermediate iterative variable, and R, an elliptic linear operator
whose exact form will be chosen to accelerate the convergence.
With the assumptions that (1) #" —u and w" —w as
n — +oo, and (2) the inverse of R exists, it may be concluded
that w = 0 and u is a solution of equation (I-1). (Here, as in
the following, the equation number (I-1), for example, refers
to eq. (1) of ref. 1.)

If one assumes that the computational effort required to
advance u" to u™*! with the two-step procedure is twice that
required with the one-step procedure, the former has no merit
unless it can achieve a convergence rate at least twice that of
the latter. Fortunately, for a large class of the operator Q an
operator R can be found such that the two-step method
convergence rate is 2 to 4 times that of the one-step method
convergence rate. Moreover, as will be shown, the higher
acceleration factor is realized whenever the one-step method
convergence rate is lower.

In the section Analysis the convergence of the two-step
procedure is investigated in a fashion similar to that presented
in the section Analysis of reference 1. In the section Local
Relaxation the results obtained in the section Analysis are
extended to solve partial differential equations (PDE’s) with
variable coefficients. Finally, in the section Numerical
Evaluation the two-step method is numerically compared with
the one-step method by using two-dimensional (2-D) and three-
dimensional (3-D) test problems.

Analysis

In this section the two-step procedure defined in equations
(1) and (2) is studied by assuming that 7 is a constant and

2 2 2
R&f a’a—2 + 2b'i- + c’a—2 3)
ax axdy dy

wherea’, b’, and ¢’ are constant coefficients to be determined
later. Furthermore it is assumed that the operators Q and P
are those defined in equations (I-3) to (I-5). The central
difference forms of equations (1) and (2) can be expressed as

B(wyy) = —T[Q'(u,g.) —h; J] @)

and
Bluzyt —upy) = R(w) 5)

respectively. Here é and F, respectively, are defined in
equations (I-8) and (I-9), and

ﬂViJ)dgf‘ a’(AX) 2Visry + Vierj — 2vi)
+¢"(AY) A Wijar + Vijo1 — 2v))
+ b’ QAXAY) T Wik e + Vi1

— Vitlj-1 ~ Vi-1j+1) 6)

for any v;;.

This report has been reprinted so that the graphs of figures 1, 2, 4, and 5 are in the correct locations.



To study the convergence rate of the iterative procedure
defined by equations (4) and (5), one notes that equations (4),
(5), and (I-6) imply that

P(wry) = - 10(er,) (7
and
F(ef’fl - ef'J) = I?(w{b) ®)

where e} is defined in equation (I-11). With the assumption
that both w{;’s and e;’s satisfy the periodic and uniqueness
conditions as given in equations (I-12) to (I-14), a line of
arguments similar to that presented in appendix A of reference
1 can be used to show that the unique solution e” ' to equations
(7) and (8) is

N 2
1 k 1 4
a{k0del _gd g7 | —gin [ +e' | —sin (=
Ax K Ay L

n
ei= Y [g("")(r)] « EOGD k0
k0¥

n=123,..;ij=0,x1,%2,.) €)]

where

GEOmE 1 = 7(y &0y ®0) (e ¥ (10)

The only parameter in equations (9) and (10) yet to be defined
is

o (60
7/ (k,l’)dgf. <m k0 eV¥ (11)
p

where

(@}
2
N
[}
2
N

k=0,1,2,... (K-1); £=0,1,2,... (L—1)) (12)

Note that here, as in the following, the symbol = is used to
designate a parameter for the two-step procedure in case this
parameter is different from its counterpart in the one-step
procedure.

At this juncture note that equation (9) is identical to equation
(1-21) except that G*? (7) in equation (I-21) is replaced by
G*? (1) in equation (9). Thus for the two-step procedure the
counterpart of equation (I-26) is

M® =G (13)
where

G (D% Max {’Q(k’“(r) ‘} (14)
= (kO)ev (' —

Furthermore the only difference between G%9(r) and
Q(""’)(T) is that the parameter

(k,£)
O, 9q
o p(k,I)

in G*9(7) is replaced by the parameter

(e, O)def.  (k.6)

Y y® Doy &0 eV (15)

in G*O(r).
Let
a >0
¢’ >0 (16)

a'c’-(b)>0

ks e i &




—————— —

&' d;,f._c_ (17)

A line of arguments which leads to equation (I-B18) can be
used to show that

Max =Y O 2 Non >0 (kDY (18)
where

,;,ax"if%[a' +e V@ ey +aG | (19)
and
YRS %[a +e¢ V@ —e Y2+ 4(;,,)2] (20)
Let
l—maxd;,f. (%)%)é { l(k,l)}
and #3))

- def M { (k,i)}
Yomin k,De¥ 1

then equations (18) and (I-B18) imply that Ypmax = Yomin > 0.
As a result one may conclude that (see equations (I-27) to
1-29)) g(r) reaches its minimum

-1
G GrY==—<1 (22)
= - L+l
when

Here 7° is the optimal relaxation factor for the two-step
method, and

2

def. —max

I >1 4)

B

With the assumption 7= 7°, it can be concluded from
equations (13) and (22) that (1) M* <1 and (2) M™
increases with an increase of L.

If the coefficients a, b, ¢, a,, and c,; the aspect ratio
(Ay/Ax); and the integers K and L are known, the parameter
L is a function of the coefficients @’, b, and ¢’. Since the
convergence rate increases with a decrease of I, ideally the
coefficients a’, b’, and ¢’ should be chosen such that Lis
at its minimum. Unfortunately this optimization problem is
too complicated to be solved by a simple analytical technique;
thus, a simplified version of this optimization problem is
solved.

To proceed, one notes that £ can be considered as a function
of K and L if the parameters_a, b,c,a’', b, c’, a,, c, and
(Ay/Ax) are known. In the appendix the existence of

g=d sup {f] 25)

K=2,L=2\ =

is established for any givensetof a, b, ¢, a’, b’, ¢’, a,, c,,
and (Ay/Ax). Note that in this report and reference 1
supremum and infimum of a finite set are denoted by Max
and Min, respectively. On the other hand, supremum and
infimum of an infinite set are denoted by Sup and Inf,
respectively. Let

E‘dgf. O\max + >‘min)2 _ (& + C")2 (26)
= A Nahmn 4@

where Apax, Amins b, and ¢ are defined in equations (I-30)
to (I-32). It is shown in the appendix that (1) £* = L" and
Q) L*= E' if and only if B -

DD'=A1 (A>0) @7

where I is the 2 X2 identity matrix,

28

and A an arbitrary positive scalar. In this report the values
ofa’, b’, and ¢’ are determined by using equation (27) with
the assumption A = 1. Thus,



, a,t
a = 2

ac—b

Coll
¢’ = — 29

a¢ - b? @
b = —Vayc b

aé — b?

Equation (29) obviously is consistent with equations (I-4) and
(16).

With the coefficients a’, b’, and ¢’ specified according to
equation (29) it is shown in the appendix that

L 2 Ynx = Ymin = | 30)

KL—+0w = = (31)

lim =1
KL—+o Ymin

Thus, in the limit of K and L— + oo the parameters 7° and
G, respectively, approach h

2
T.dif' . 32
= g +1 2
and
r' -1
G =_ <1 33
= r +1 ©3)

If equations (33), (26), (I-36), and (I-37) are used, it can be
shown that

. . GH?
g = o(G )dgf. '2(_(—();,)2 (34)
Since
d 4G’

e >0 35)

dG" [2-(GHY

for 1 > G >0, one concludes that p is a simple
monotonically increasing function of G'. Thus, the same
value of c,/a, which optimizes G~ (see equations (I-39) and
(1-40)) will also optimize Q'. In other words the value of Q'
reaches its minimum h

Gmi? _ b?
2 —(Goin)? 2ac —b?

*  def.
gmin =

(36)

when ¢ /a, = c/a.

In the limit of K and L— + oo the parameters G and G’
are the asymptotic error multiplication factors for the one- and
two-step methods, respectively. Assuming that the execution
of one iteration in the two-step procedure requires twice as
much computational time as that in the one-step procedure,
one may conclude that asymptotically the two-step method is
faster than the one-step method by a factor of £ if

G=@GHY (1>G>0

With the aid of equation (34) one obtains

{2 — (GH?]

£ =§GH® 1 -~ 1>G >0) 37N

In[(G")?]
Since
dix(x) >0 A>x>0) (38)
and

lim £(x) =1
=0 (39)

lim £0) =2

the acceleration factor £ increases from 1 to 2 monotonically
as the value of G’ increases from 0 to 1; that is, the higher
value of £ is realized whenever the need to accelerate the one-
step method is greater. (See also fig. 1.)

In a fashion similar to that described in the section Analysis
of reference 1, the two-step procedure described in this section
can be generalized for a space of higher dimension. However,
it should be noted that in an N-dimensional space (N > 2) the
generalized version of equation (27) represents only a subset
of the general solution to the condition E = L% (ref. 2).

Local Relaxation

With the technique of local relaxation developed in the
section Local Relaxation of reference 1, the two-step procedure
described in the section Analysis can be extended to solve

e
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Figure 1.—Function £ (x) = 1 — [In (2 — x9)/(In x?).

PDE’s with variable coefficients (VC’s). Thus, with the aid
of equations (26) and (32) one concludes that equations (I-47)
and (I-58) are replaced by

i+ 602 )7!
;=20 1+—% (40)
= 4laye; — (Byp)?]
and
b+ O 27-1
T = 2|1+ (p‘J_gll)_ 41)
- 4ﬁi;@ij

in the two-step procedure.

Moreover, the VC versions of equations (6) and (29) are
obtained by substituting the coefficients a’, b’, ¢’, @', b,
and ¢, with ajj, by, cjj, ay, B,-j, and ¢;. For the case when
the operator Q is a self-adjoint operator defined in equation
(I-56), these VC versions are modified by replacing a;, ¢;,
and Bij with py, g;;, and 0. It should be cautioned that for the
special case where p; = g;;

ptj
;=1
o]
’ pij

Thus, the VC versions of equations (4) and (5) imply that

ﬁ(uf']“ —u,’-‘J) = — T,y-l:é(uﬁj> —h,-j]

In other words the extra computational effort required for the
two-step method is completely wasted, since the convergence
achieved in one iteration is identical for both the one- and two-
step methods. Note that a similar situation also arises in the
solution of the PDE’s with constant coefficients. Let 4 = é
and b = 0. Then G" = G’ = 0. In other words the machine
accuracy solution is obtained in one iteration for both the one-
and two-step methods. Since the parameter £ is ill defined at
G =0 (eq. (37)), the assertion made in the section Analysis
concerning the advantage of using the two-step method
apparently is not valid for the special case in which @ = ¢ and
b=0.

Finally, it is noted that equations (34), (35), and (I-52) to
(1-55) can be used to show that

(1) M® = G = p(G®) “42)

(2) For the case in which b; =0 for all (i,)€®, G
reaches its minimum

Grin™" 0(Gip) 43)

if and only if c,/a,=vBmax * Bmin- Equation (42) combined
with equations (34) and (37) suggests that the parameter

In[2 — (G*)?]

coydef. 1 _
O T e

(44)

may be used to predict the numerical acceleration factor

S (n)d_gf. [Or(n)]two-step procedure ( 4 5)
' [Or(zn)]one—step procedure

where O,(n) is defined in equation (I-61).

Numerical Evaluation

Initially the test problems used in the comparison of the one-
and two-step methods involve the constant coefficient finite




difference equations defined by equations (I-6) and (I-8). These
problems were designed such that many key results of the
current theoretical development could be tested numerically
under the most ideal conditions. As a preliminary a line of
arguments similar to that given in appendix A of reference
1 is used to obtain the following results:

(1) Let
hi,j=hi+K,j=hiJ'+L (l,_]=0, + 1, d:2,...) (46)
and
(K-1) (L-1)

E hi;j=0 @7
i=0 j=0

where K = 2 and L = 2 are two arbitrary integers. Then %, ;s
are uniquely determined by equation (I-6) and the following
auxiliary conditions:

Uij=uUivg; = Wjrp (Gi=0,x1,x£2,.) (48)
and
X-1) L-1)
Y, mj=0 49
i=0 j=0

(2) The unique solution to equations (I-6), (48), and (49)
is explicitly given by

where %" is the complex conjugate of o,

For the test problems defined in table I the A; Jj S are chosen
to meet the conditions (46) and (47). They are given by either

VKL _ —1.L-
hiJ=—4 [¢§bl)+¢5§ W) 4 pQL=D) 4 K=1L 1)]
2wi 2mj
cos <%> cos <—%> (52)
or

hij=~KL E 901(5"?)

(k,He¥
27kei 27lej
= E cos< TK l> cos< T j> (53)
(k,De¥ L

The wi;’s and u{;’s are assumed to satisfy the periodic and
uniqueness conditions given in equations (48) and (49).
Moreover, it is assumed that (1) a=c=a,=c, =1, (2)
Ax = Ay = 1/K = 1/L, and (3) the relaxation factors 7~ and
1', respectively, are used in the one- and two-step
procedures. Note that equations (I-38) and (I-41) coupled with
assumption (1) yield

L]
T =7°=1.

Problems 1 to 4 are studied first. Since u?J- = 0 for every
i and j, equations (50) to (52) can be used to show that the

_ H®H *.0) (=0, 1, +2 50) only surviving FEO%0>g are E%Gb EO’(K—I"), EO'(I'L'”, and
Uij G &0 P LI =Y ’ o) ( E®&=1L=D Moreover,since K = L,
k,0e¥ "9
The gnly pzilrameter in equation (50) which was not defined o " Yoo if 520
previously is A OD = fK=1L-D) (54)
(K-1) L-1)
k,8)def. (%]
H®&Hde E E hijoll  kDeV 51
i=0 j=0 and
TABLE I.—DEFINITIONS OF PROBLEMS 1 TO 8 AND VALUES OF KEY PARAMETERS
[a=c=a,=c,=1, Ax = Ay =1/K = 1/L.]
Problem | h; b | K=L| ~logo(G") | ~logio(G°) | ~logyo(G") | —logio(1=7" vmi) | £(G) 3¢
1 eq. (52) [ 0.25 16 |[0.6020600 | 0.6189121 1.491362 1.561608 1.238549 | 1.261575
2 .25 64 .6020600 .6031069 1.491362 1.495559 1.238549 | 1.239879
3 l .875 16 .05799195 | .07484407 2074310 2776769 1.788447 | 1.855036
4 .875 64 .05799195 | .05903883 2074310 2116287 1.788447 | 1.792284
5 eq. (53) | .25 16 6020600 .6189121 1.491362 1.561608 1.238549 | 1.261575
6 25 64 .6020600 .6031069 1.491362 1.495559 1.238549 | 1.239879
7 l .875 16 .05799195 | .07484407 | 0.2074310 0.2776769 1.788447 | 1.855036
8 .875 64 .05799195 | .05903883 | 0.2074310 0.2116287 1.788447 {1.792284




-1 _ ap-p _ § Ymn if 5=0
Y =v = X (55)
Yoa if b =0

These considerations coupled with other equations given
previously lead to a simple formula for the residual norm of
the one-step procedure:

K-1) (L-1) )12
IIr"IIdif'{ )Y {Q(e,’-i,-)]} =-’25<c°>"

i=0  j=0

K=1L (56)

where G° is the parameter defined in equation (I-27). Thus,
one concludes that in the absence of roundoff error the relation
between O,(n) and n for problems 1 to 4 are represented by
straight lines if the one-step method is used. The slope of each
straight line is —log;o(G®).

Similarly by using the fact that

l(l,l) _ A1)

I

4L-1)

1=

K—-1,L—1)

2

B

n K =1L (7
one concludes that for the two-step procedure

K . n
bl =2 (1= £ i) (58)

Thus, in the absence of roundoff error the relation between
O,(n) and n for problems 1 to 4 are also represented by
straight lines if the two-step method is used. The slope of each
straight line is —log;o (1— 7 Yumin)-

The predictions given by equations (56) and (58) are
confirmed by the numerical results shown in figures 2 and 3.
The slopes of the upper two curves in figure 2 and all four
curves in figure 3 agree with the predicted values for at least
the first seven significant digits. (The accuracy of the
computation is double precision on the IBM 370.) This is also
true for the lower two curves in figure 2 before the roundoff
error becomes dominant. Furthermore, these two curves
quickly settle into horizontal lines as soon as the roundoff error
becomes dominant.

These numerical results indicate that the roundoff errors
never grow during the entire convergence histories of problems
1 to 4. This is also consistent with our theoretical development.
Recall that a roundoff error introduced at any stage of the
iterations can be considered as a linear combination of

’ > Problem 1 % Two-step method
o Problem 2 P
) Probleml} One-step method
4 ® Problem 2 siep me
81
£
O\-
12 —
16 —
OO0
I I I I i
2 0 4 8 12 16 2
n
Figure 2.—Convergence histories of problems 1 and 2.
0
2
]
oh
41— o Problem 3 % Two~step method
o Problem 4
. Problem3% One-step method
° Problem 4
6 | I | | I
0 8 16 24 32 40

Figure 3.—Convergence histories of problems 3 and 4.

<p$’fj") ’s. Because of the uniqueness condition (I-A12),the k=0
and =0 component of this combination is annihilated during
the next iteration. On the other hand, each of the remaining
components is multiplied by either G*9(r*) (one-step
method) or G®9(7") (two-step method) as the iteration
number 7 increases by 1. With the aid of equations (I-33),
(1-35), (30), and (32), it can be shown that

‘G(k,l)(,r*)

<land |GE%()| <1 kpeY

For problems 1 to 4, the acceleration factor £,(n) defined
in equation (45) is virtually equal to



s ger, 198101 = 7" Yonia)
2 log;o(G°)

(59

before the roundoff error becomes dominant. The value of £’
as well as the values of five other parameters are listed in the
last six columns of table I. These parameters, according to
equations (I-34) and (31), are related by the following limit
equations:

lim log;o(G®) = log,o(G") (60)
KL—~+o
i 1080(1 £ 20) =Iogl8) @
and
K'Lllnlmé =¢(G) (62)

Note that the parameters on the left sides of equations (60)
to (62) depend on the aspect ratio Ay/Ax but not on the
individual values of Ax and Ay. Thus, the variation of Ax and
Ay is allowable as the integers K and L approach infinity as
long as the ratio Ay/Ax is held constant. Since Ay/Ax = 1 for
problems 1 to 8, one may expect that the values of the
parameters on the left sides of equations (60) to (62) approach
more closely to the values of the corresponding grid-
independent parameters on the right sides as the values of K
and L increase from K = L = 16 to K = L = 64. The values
shown in table I confirm this expectation.

As also shown in table I, the values of —log;o(G°) and
—logo(1 — 1‘ Ymin)» and thus the actual convergence rates of
the one- and two-step procedures, may be substantially
underestimated by the values of —log,o(G') and —log,o(G"),
respectively, if b is relatively large, and K and L are relatively
small. As a result the convergence rates tend to be more
sensitive to the change of the integers K and L if the value
of b/Nac is closer to 1. (See fig. 3.)

For problems 5 to 8 the k;;’s are specified according to
equation (53). With this choice of the source term all E®®%’s
survive. As a result the relation between O,(n) and n for
problems 5 to 8 are no longer represented by straight lines.
However, as expected from theoretical considerations, the
slope of any curve shown in figures 4 and 5 approaches either
—1log1o(G®) (one-step procedure) or —log;o [G(77)] (two-step
procedure) before the roundoff error becomes dominant. Note
that G(7) =G ifa’ =¢'.

The initial comparisons of the one- and two-step methods
in regard to their ability to solve PDE’s with variable
coefficients involve problems 1 to 17 of reference 1. The
relative efficiencies of these two methods, measured in terms

0
o Problem 5 } Two-step method
© Problem 6
. : Problem 5 } One=-step method
Problem 6
g —
=
oi_
12 —
16 —
2 | | s
; i g 12 16 2
n
Figure 4. —Convergence histories of problems 5 and 6.
0 4
o Problem 7 t Two-step method
o Problem 8
= Problem 7 } One-step method
Problem 8
2 —
G
s
41—
6 L ‘ I E I
. P 16 2 32 o

Figure 5.—Convergence histories of problems 7 and 8.

of the parameter £,(n) (eq. (45)), are given in table II. It is
seen that (1) the convergence is accelerated, that is,
£,.(n) > 1, by the two-step procedure in only six test cases,
and (2) without any exception, £,.(n) is smaller than the
corresponding theoretical parameter £(G”), and the
discrepancy is rather large for the test problems with rapidly
varying coefficients, that is, problems 13 to 15 of reference 1.
These disappointing results, however, are not surprising
because of the following considerations: (1) the technique of
local relaxation, obviously, is less viable in the case of the




TABLE I1.—VALUES OF £(G™) AND £,(n) FOR PROBLEMS 1 TO 17
OF REFERENCE 1

[For problems 1 to 5, n = 10; for problems 6 to 15, n = 16; and for problems 16
and 17, n = 5.]

Problem

1 2 3 4 S 6 7 8 9

|
I
i
) £(G™) | 1.234 [ 1.237 | 1.228 | 1.234 | 1.236 | 1.402 | 1.403 | 1.394 | 1.403
£(n) [1.077 | 1.133 | 1.144 | 0.904 | 1.024 | 0.962 | 1.068 | 0.730 | 0.977

Problem

10 11 12 13 14 15 16 17

£(G™) [ 1.403 | 1.402 | 1.289 | 1.289 | 1.289 | 1.289 | 1.336 | 1.367
E(n) |{0.897 | 0.804 | 0.809 | 0.521 | 0.347 | 0.169 { 0.793 | 1.216

TABLE III.—VALUES OF KEY PARAMETERS FOR

i two-step procedure, and (2) the one-step method convergence PROBLEMS 9 AND 10

rates associated with these test problems are all relatively high,
and thus the advantage of using the two-step procedure is
greatly reduced.
To demonstrate that the two-step method could be
substantially faster than the one-step method for the test
' problems with low one-step method convergence rate,
problems 9 and 10 are introduced, which are modified versions
of problems 16 and 17 of reference 1. The modification
involves only the enlargement of the domain of equation (I-69)
from 1=zx=0and 1=zy=0to 1.52x=0and 1.52y=0. A
comparison between table II of reference 1 and table III of

Problem | c,/a, | O(10) | £G™) | £.(5) | £,(10)

9 %0.1239 | 1.083 | 1.654 | 2.009 | 1.840
10 %0.1065 | .928 | 1.698 | 1.741 | 1.745

3Evaluated from eq. (I-54).

TABLE IV.—VALUES OF KEY
PARAMETERS FOR TEST
PROBLEMS DEFINED
IN TABLE I OF

this report reveals that this simple modification results in a REFERENCE 1

large reduction in the values of 0,(10) and thus the one-step

method convergence rates. Furthermore, it can be seen that - -

the two-step method, as indicated by the values of £.(5) and Equation Sf':::;f; €o/a, sTéc

£.(10), is indeed substantially faster than the one-step method

for problems 9 and 10. (I-73) | One-step | 20.8839 [ 1.871
Problems 18 and 19 defined in reference 1 are associated (-73) | Two-step | °.8839 | 1.531

with a self-adjoint PDE (I-70) in which the coefficients p and (I-74) | One-step | 9.989 -888

q are identical. As noted in the section Local Relaxation, for l gwo-swp *9.989 1.050

.. . ne-step | 1.0 14.04
these test problems the two-step method is inferior to the one- Two-step | 1.0 7.61
step method.

a
The next test problems to be discussed are those defined Baluated from eq: (1-34)

in table III of reference 1. If the values of c,/a, used in the

iterations are chosen according to equation (I-54), the
computational efficiencies of the one-step and two-step
methods are about equal, as shown in table IV. It is also shown
that for the test problem associated with equation (I-74) the
convergence rates are sharply reduced if ¢,/a, = 1 is assumed
in the iterations. In this case the computational efficiency of
the two-step method is about twice that of the one-step method.

Finally, the one- and two-step methods are compared by
using the three-dimensional test problem defined in the section
Application to a 3-D Flow Problem of reference 1. As in

reference 1 it is assumed that p; = p, = 1 and p; = 0.4135.
The values of £,(4) obtained during the 25 passes through the
inner loop range from 1.140 to 1.308, with the average being
1.256.

Concluding Remarks

A two-step semidirect procedure was developed to accelerate
the one-step procedure described in reference 1. The




acceleration may be substantial for elliptic problems which
have low convergence rates with the one-step procedure.

A key element in the development of the two-step procedure
is to choose the coefficients a’, b’, and ¢’ such that the
convergence rate (in a sense defined in the section Analysis)
can be maximized. This optimization problem is solved by
equation (29). With the coefficients a’, b’, and ¢’ so chosen
a simple monotonic relation exists between the asymptotic
error multiplication factors for the one- and two-step
procedures. This relation not only enables us to establish the
superiority of the two-step procedure compared with the one-
step procedure, but also contributes greatly to the simplicity
of the two-step procedure.

Finally, it should be emphasized that the development of
the current one- and two-step procedures involves many bold
assumptions. In future development it is hoped that the validity
of these assumptions may be evaluated by using a rigorous
matrix formulation. It is also hoped that the limitations imposed
by these assumptions can be at least partially removed.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 6, 1986
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Appendix—Mathematical Foundation for the section Analysis

The existence of the supremum I* defined in equation
(25) is shown here. With the aid of equations (I-B18) and (18),
equations (15), (21), and (24) imply that

)\max * )‘;nax

(AD)

Amin ® )\r’nin

Since the upper bound of L given in equation (Al) is
independent of the integers K and L, the existence of L® is
established. -

To prove that (1) £Z° = E" and (2) £° = £’ if and only

if eq. (27) is satisfied, the following Lemmas are established:

Lemma 1

Let
H(v,v) % [a(v)? + &0m)? + 2bvv,)
[@' )+ &)’ +2b' vl (A2)
where v; and v, are real variables satisfying
)+ )t =1 (A3)
Then the supremum H,, and the infimum H;, of the

function H over its domain exist. Furthermore, H,,, = H;,>0,
and there exist real members v;', v,7, v, and v; , such that

G+ D =00+ () =1 (Ad)
Hv!w)=H,, >0 (A5)
and

H(vi,v;) = Hyn >0 (A6)
Proof

Since H is continuous over a compact domain, Hy .y, Hnin,
vi', v, v, and v; must exist. It follows from equations
(I-4) and (16) that H,, = H;, > 0.

Lemma 2

H,
max (A7)
Hy,

RS

=

Proof
Let

F(51,85,0,0) €5 [a(51) + &(50)” + 2bs1sy1117]
(@’ (s;)% + &' (sp)% + 2b' s15,1115] (A8)

where sy, §;, ty, and ¢, are real variables satisfying equations
(I-BS) and (I-B7). Using equations (11), (12), (15), and
(I-B13) to (I-B17), one concludes that

Y D = Fs,,5,t01,) k.0 eV (A9)

Furthermore, a comparison between equations (A2) and (A8)
reveals that

v A%
H(v,v;) = I__V(Ivll, va], — 2>

|V1|’ [val

ifvy#0and v, #0 (A10)

Let v; and v, be two given real numbers satisfying (1)
)2+ (»)?=1, and 2) v; # 0 and v, # 0. Following a
line of arguments (eqs. (I-B21) to (I-B31)), which was used
in reference 1 to establish the existence of the integers K, and
L,, one can show that for any 6, > 0, 6, > 0, ¢, > 0, and
€, > 0 there exists a pair of integers K, and L, such that for
any K = K, and L = L, two integers k and £ can be found to
satisfy the requirements

6x> lsx - Ivlll

ay > Isy - IVZH

Vi

€ > |t — I—V—T
1
V2

€y >0t - —|V2|

Thus, in the case having v;* #0, v;t # 0, v #0, and
vy~ # 0 equations (A9) and (A10) along with the continuity
of the function F can be used to show that for any £ > O there
exists a pair of integers K and L large enough that (k,f) € ¥
and (k',0’) € ¥ can be found to satisfy the requirement



2% HEty
YO O )

£E>

With the aid of equations (24) and (25), one concludes that
inequality (A7) is true if vit #0, " #0, v #0, and v5” #0.
Since H(0, = 1)=¢¢'=v%Y, and H(x1,0)=aa’ = y*O,
inequality (A7) is valid for all v;*, v, v{", and v; which
satisfy equations (A4) to (A6). QED.

Lemma 3
Let
FOEENE+ ML —OINEI+ N1 —]>0 12020
(A1)

where A\;, \;, A, and \; are given positive numbers. Then
(1) The supremum f,,, and the infimum f;, of the function
f over its domain exist, and f,,, = foin > 0.

@) foax o SO o v+ a2

fain  Min [fOLAD] Ay
fmax — O\l + )\2)2
fmin 4’)\1)‘2

Proof

Part (1) 1s obvious. To facilitate the proof of (2) and (3),
three exclusive cases are studied separately.
Case 1. \A; = A\, —For this case

(3) if and only if A\ { = A\,

, 6 1-6
J0) = MN[0 + M(1 - 6)] [— + ]

A A
and thus
MO+ V)P
fa2) = —_—4>\1>\2 = f(0) = f(0)
=f()=M\; 12020
As a result
fowx _FQ112)
fmin f(O)
_ f(1/2)
S
_ )2
4N
12

Case 2. A\ 1> A\ ,.—For this case Min {f(0), f(1)}=£(0),
and

f472) A2 A+ MO = MM
f0) AN AN,

Case 3. \h3> A\ A1.—For this case Min {f(0), f(1)]=£(1),
and

1) _ 27 A+ NN — NN o
fy A ANdoAy

QED

Lemma 4

T

ax

H, min

2

lly

with the understanding that the equality sign is valid if and
only if equation (27) is satisfied.

Proof

To proceed, the first quadratic form on the right side of
equation (A?2) is diagonalized (ref. 3) by using an orthogonal
transformation

v, v) = (v1, v

Thus,

() + () =)+ ) =1 (A12)

and

H(v) = B2 )% (20 + Ai(2°]
x[a/?+ e P +2 mw| @A)

where Ap,, and A, are defined in equations (I-30) and

(I-31). Let
x 0 . d/ ’
Dt <)“3 \ >and9'd:f~ (; > (A14)
min <

There exists an orthogonal matrix U such that

1

o™

D=UDU ' and D' = UD'U! (A15)

where D and D’ are the matrices defined in equation (28).
As a result the matrices D', like D', is positive definite; that
is,

e




a’' >0
& >0 (A16)
a'¢’ =) >0
Let
FOE Mo 0 + Ain(1—0)I[2°0 + £ (1 — 0)]
12620 (A17)

Then equations (A12) and (A13) imply that
H(v,v) =f((x)) + 25" vy

X Pamax(¥)? + Myin( ¥2)°] (A18)

To proceed further, two exclusive cases, (1) é "=0and (2)
b’ # 0, are studied separately.

Case 1. b’ = 0.—For this case H(y,v) = f(¥)?.
With the aid of equations (AS), (A6), (A12) to (A16), (26),
and (I-33) Lemma 3 implies that

el

I > ¢

Hy;

=]

with the understanding that the equality sign is valid if and
only if equation (27) is satisfied.
Case 2. b’ # 0.—For this case, equation (27) is violated

since DD’, and thus DD’, can not be a scalar matrix.
Furthermore,
1 ?7’ 1 1\ 15’
=fl=] + = Qumax + \i

> f

g
N—

and
HQ,1) = f(0)
H(1,0) = f(1)

Thus, with the aid of Lemma 3 one concludes that

H,. £(1/2)
> — =z
Hmin Min {I(O)’ f(l)} =

QED

Lemma 5

Let s;, 5, ?;, and 1, be real variables satisfying
equations (I-B5) and (I-B7). Then

AL = Fisisatn) = A

if the matrices D and D’ are related by equation (27).
Lemma 5 is a special case of theorem 2 in reference 4.

Lemmas 2 and 4 imply that (1) L™= L’ and (2)
£ > E if the condition (27) is violated. On the other hand,
if condition (27) is satisfied, Lemma 35 combmed with
equations (A9), (24), and (25) implies that L* = E°. Thus,
one concludes that L = I* if and only if condition (27) is
satisfied. -

Finally, expressxons (30) and (31) are shown as follows: If
the matrices D and D’ are related by equation (27) with A = 1,
Lemmas 4 and 5 coupled with equations (A9) and (A10) imply
that
L =Hp=z Y 2H, =1 ((kbheV¥ (A19)
(Eq. (A10) may be replaced by H(v;,vp) = F(v1,1,,0,0) if
either v; =0 or v, = 0.) Expression (30) follows directly
from equation (A19). Furthermore, with the aid of expression
(A19), equation (31) can be shown by using a line of arguments
similar to that presented in the proof of Lemma 2.

13
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